

The VerticalResponse API Guide

Revision 4, 9/2012

Copyright © 2012 VerticalResponse, Inc.

 2

Table of Contents
1. Introduction

● About This Guide
● Enterprise API vs. Partner API
● Email Campaign Creation Workflow

2. Accessing the VerticalResponse API
3. Getting Started with the VerticalResponse API

● Logging In to Create a Session
4. List Creation and Management

● Creating Lists
● Adding List Members
● Updating and Deleting List Members
● Retrieving Bounces and Unsubscribes

5. Email Campaigns
● Anatomy of an Email Campaign
● Creating an Email Campaign
● Launching an Email Campaign

6. Campaign Reporting and Statistics
● Summary Email Statistics
● Detailed Campaign Reporting

7. Creating and Managing Partner Accounts
● Creating Subaccounts
● Single Sign On

8. Appendix
● Appendix A: Support Resources
● Appendix B: Installing SSL Client Certificates

 3

1. Introduction
You already know how easy it is to create and send professional email campaigns with the
VerticalResponse website (and if you don’t, you should sign up for a free account now – it will
help as you follow this guide). But did you know you can leverage this power and automate any
of the email marketing functionality VerticalResponse provides?

Anything you can do with email marketing on our website, you can do programmatically
through the VerticalResponse API, including:

● Creating and uploading a list,
● Adding to and editing existing lists,
● Creating, editing, and sending email campaigns, and
● Retrieving campaign statistics, including opens, clicks, unsubscribes, and bounces.

Our robust API provides opportunities for automation and integration that can save you, your
marketing department, and your customers time and money. If you sell software to your
customers that contains their contacts’ email addresses, you can seamlessly add
VerticalResponse to your system and dramatically add value for your customers by making that
contact information actionable. The possibilities are virtually limitless.

About This Guide
The purpose of this guide is to give you a complete introduction to the VerticalResponse API
and to help you get started integrating your code with our email marketing functionality. Within
this guide, you’ll find recommendations, best practices, and ideas to help you get going and
inspire your development.

The VerticalResponse API is quite extensive, so it’s not possible to cover every method here.
We encourage you to explore the API Documentation online for the full set of features available.

Because the API is implemented as a SOAP web service, it is completely language agnostic.
Within this guide, we have not supplied any code samples since the code will be different
depending on which language and which SOAP client you are using. We encourage you to
download the code samples found on the Developer Network to help you get started.

Enterprise API vs. Partner API
The VerticalResponse API comes in two flavors: the Enterprise API and the Partner API.

If you only manage a single VerticalResponse account for yourself or your company, you
can leverage the free Enterprise API to automate many of the processes you perform
each day. For example, if you find yourself regularly running a manual query on your database
to produce a CSV file to upload to VerticalResponse as a new list, you can use the Enterprise

 4

API plus a little bit of scripting code to automate the process into a single step. You can even
send automated emails to new signups on a scheduled basis. To get started with the Enterprise
API, contact the VerticalResponse API support team and request that the API be enabled for
your account.

If you manage several VerticalResponse accounts or intend to resell our services, the
Partner API is the right solution. In addition to all of the functionality available in the
Enterprise API, the Partner API allows you access and maintain the accounts you control. Here
are a few example integrations:

 If you provide a Customer Relationship Management (CRM) system to your customers,
your customers can segment a list using your tools, then send it to VerticalResponse via
the API as a new list.

 If you provide a Content Management System (CMS) to your customers that generates
HTML, you can leverage those tools to allow your customers to create emails using the
same system they use to manage their website, then send that HTML to
VerticalResponse as a new campaign.

 Our Single Sign On feature allows you to seamlessly log your customers into their
VerticalResponse account to complete the rest of their mailing.

To get started with the Partner API, contact the Partner sales team and they can give you all the
details of that program.

Email Campaign Creation Workflow
Creating and sending an email campaign follows a well-defined workflow. Using the API, you
can automate any part of this workflow or even the entire workflow. The standard steps to
launch an email campaign are:

1. Create a new list
2. Upload list members to that list
3. Create a new email campaign
4. Add and edit the content to that campaign
5. Preview the email content and send a test email to yourself
6. Attach one or more email lists to the campaign
7. Launch the campaign
8. Retrieve the email statistics

2. Accessing the VerticalResponse API
In order to use the Enterprise API, it must be enabled for your account; you can request access
by filling out the API Request form. Once the API is enabled for your account, you’ll be ready to
integrate with VerticalResponse. Accounts using the Enterprise API do not require client
SSL certificates; only the Partner API requires certificates.

 5

If you would like to enable the Partner API for your existing account, you should contact your
partner success manager. If you are not already a VerticalResponse partner, you should visit
the Partner Program website and fill out the request form.

Once the Partner API is enabled for your account, you will receive a confirmation email along
with two SSL client certificate files and their passphrase. These certificates provide an additional
layer of authentication to ensure that only the holders of the certificates are able to access your
subaccounts. Once you have installed the certificates according to your programming language
and operating system, you will be able to create and access all of the subaccounts under your
partnership.

3. Getting Started with the VerticalResponse API

Logging In to Create a Session

Before you can make any other calls to the VerticalResponse API, you must first call the login()
function and get a session key. This key is required for all subsequent method calls and is only
valid for the time you specify with the session_duration_minutes parameter. You should set this
parameter high enough to ensure that all functions for that session complete in the given time. A
good starting value is 5 minutes, but it can be set as high as 120 minutes – a full two hours.

If you are using the Enterprise API, you’ll need to provide the username and password for your
VerticalResponse account. If you’re using the Partner API, you must use the username and
password for your master VerticalResponse account. If you intend to access one of your
subaccounts via the API, you must provide the username for that account in the
impersonate_user parameter of the login() call.

When should you use impersonate_user?
As a Partner API user, you will be performing a number of functions on behalf of your
subaccounts through the API. You should not pass your customer’s email address and
password directly with login(); rather, you should log in as the master account and use
impersonate_user with the user’s email address.

When performing administrative tasks on subaccounts directly through your master
account, do not use the impersonate_user parameter. Administrative tasks include
editUser(), getUserSignOnURL(), createUser() and createCompany(). A good rule of
thumb: if a user ID, company ID or username is part of the call you’re making as a
partner, you should not use the impersonate_user parameter.

Any functions you’re performing within a subaccount – such as createList(),
createEmail() or appendFileToList() – require the impersonate_user parameter (unless, of
course, you’re performing these functions within the master account).

 6

4. List Creation and Management

Creating Lists
Creating a new list is as easy as giving it a name and calling createList(). This will create an
empty email list with the standard set of fields, to which you can add list members. The data you
add to your list can then be merged into your email campaigns or used within our segmentation
tools to sub-divide and create new lists based on various parameters.

Merge fields are identified by {curly braces} and |pipes| within them to provide a default in the
case that the list doesn’t contain any merge data. Here is an email salutation as an example:

Hello {FIRST_NAME|Subscriber},

These are the standard list fields and their corresponding merge fields:

Standard Field Name Merge Field
Email Address {EMAIL_ADDRESS}
First Name {FIRST_NAME}
Last Name {LAST_NAME}
Created Date {CREATE_DATE}
Title {TITLE}
Company Name {COMPANY_NAME}
Address 1 {ADDRESS_1}
Address 2 {ADDRESS_2}
City {CITY}
State / Province {STATE}
Postal Code {POSTALCODE}
Country {COUNTRY}
Work Phone {WORK_PHONE}
Home Phone {HOME_PHONE}
Mobile Phone {MOBILE_PHONE}
Fax {FAX}
Marital Status {MARITAL_STATUS}
Gender {GENDER}

For data beyond these standard fields, VerticalResponse allows you to define about 65 unique
custom fields for your lists ranging in size from 25 characters to 255 characters. To specify the
custom fields for a list, you can provide them as a simple array of strings using the field names
as values in the custom_field_names parameter. Custom fields can also be used to merge data
into emails or with our segmentation tools to create new lists.

The createList() method will return a list ID that will be used for all subsequent calls made for
that list. If you’re maintaining your contacts database within your own system, you should store
the list ID and the list name for easier reference through your own interface. You can also get a
list of active lists within your account by calling enumerateLists().

 7

Adding List Members
There are two methods used for adding list members to a list. Which method to use depends on
how many list members you’re adding at a time.

If you’re adding a single recipient to a list, use the addListMember() method. Each call to
addListMember() can take several seconds to complete, so looping over it to add a large
number of lists members at one time is rather inefficient.

In the case where you’re adding more than one list member at a time, you should call
appendFileToList(). This method accepts a large string, formatted as a CSV file and base-64
encoded, as a parameter.

If your application adds members to a list after they have filled in a form on your site, you may
find it more efficient to store that information locally and batch upload the list one or several
times a day using the appendFileToList() method rather than calling addListMember() for each
signup. You can expect any call to a remote server to generate some lag. Reducing the number
of calls you make will speed up your processes considerably.

Updating and Deleting List Members
You can update individual list members using editListMember(); the list member is identified by
a hash, which can be retrieved using the method getListMemberByEmailAddress(), which
returns all stored list member data, including their hash.

If you need to update multiple list members, we recommend using the appendFileToList() call.
You can set several parameters, such as favor_existing_values, to affect how
appendFileToList() handles situations where an uploaded list member already exists.

You can remove list members by calling deleteListMember(). However, you should be aware
that removing list members can affect your campaign reporting. In some instances, the
VerticalResponse reporting tools use summary information to show you how many recipients
opened or clicked on an email. In other instances, the reporting tools tally the campaign details,
which are tied directly to the lists used in the email send. Deleting these lists or their list
members will render some reporting inaccurate.

How VerticalResponse Manages List Data
Every VerticalResponse account has a Master List, which all other lists are derived from.
For this reason, editing any data associated with a given list member will also update that
data in all other lists within the account.

Although the Master List cannot be deleted, all the list members can be deleted from it,
leaving it (and any sub-lists) empty.

 8

If you’re removing list members because they either requested to be unsubscribed from outside
the VerticalResponse system (i.e. they sent you an email directly or called you on the phone) or
because you know their email address is invalid, you may prefer to simply mark them as
unsubscribed in the system instead. You can either do this manually by logging in to your
account through the VerticalResponse website or you can set the list member’s optin_status
using the editListMember() call. To mark them as unsubscribed, simply set this value to ‘1’.

Retrieving Bounces and Unsubscribes
You can download the complete list of all email addresses that have either unsubscribed from
your account or have been marked in our system as undeliverable by calling the
downloadCompanyUnsubscribesAndBounces() method. This will return a URL that points to a
CSV file containing a complete list of all unsubscribed email addresses and hard bounces for
your account.

5. Email Campaigns

Anatomy of an Email Campaign
The Email Campaign consists of every piece of information required to send an email, including:

 List IDs for the list or lists the campaign will be sent to,
 Content for both the text and HTML versions of your email,
 Preview and test versions of the email content,
 When the email should go out, and
 Statistics showing who on your lists opened, clicked, unsubscribed, or bounced.

Any email you send through VerticalResponse has all of this information associated with it.
Thus, Email objects are full of information that goes beyond just the content.

Why We Require a Text Version
We require both HTML and text versions for all campaign types (except text-only
freeform_text campaigns). Because some email addresses are configured to accept
only plain-text emails, HTML emails are sent in a multi-part MIME format. This allows all
subscribers to only receive a single version of their email, in their preferred format.

Our web interface creates a plain text version for HTML emails automatically, so if you
are creating an email via the API, then editing it through our email creation tools, we will
generate that text version on your behalf. If you are working exclusively via the API, you
will need to include the plain text version using the freeform_text attribute.

 9

Email Type
VerticalResponse provides types of four email campaign: Wizard, Canvas, Freeform HTML, and
Freeform Text. The type is set with the email_type attribute using one of the four options below.

Wizard refers to the drag and drop email creation Wizard that can be found within the
VerticalResponse web interface. You can access campaigns of this type and their
associated statistics through the API, but they can only be created via the web interface.

Canvas email campaigns can be created through both the API and the web interface.
This type is ideal for creating an email campaign through the API that you intend to edit
using our WYSIWYG (What You See Is What You Get) editor, called the Canvas editor.

Freeform HTML campaigns (passed as freeform_html) allow you to create an HTML
and text email through the API when you don’t intend to edit it via our WYSIWYG editor.

Freeform Text campaigns (passed as freeform_text) are ideal for sending plain-text
emails. Note: text-only campaigns do not include open tracking, since we track via a
transparent tracking GIF that pings our servers when the email is opened.

Freeform_text is also the attribute you will set if you are creating your email
exclusively through the API. See the inset “Why We Require a Text Version”
above for more information.

Email Content
If you are sending HTML content via the API (whether to a canvas or freeform HTML email), you
will set the content using the attributes freeform_html and freeform_text.

Name
This is the name of the campaign as it will appear within the web interface as well as in the
objects returned by the enumerateEmailCampaigns() method. This name must be unique within
your account; you cannot have two campaigns with the same name.

Subject
This is the subject line of the email. Unlike the name of the email, it can be a duplicate of a
previously sent email campaign, though that’s not always considered a best practice.

From Label
When a campaign is sent to your customers, the from_label is the string they will typically see in
the “From” line in their email client. The from_label must fit the content of your email, otherwise
your campaign could be declined. For example, if you set the from_label to the sender’s name,
it should be clear from the content of the email, including the email footer, that the individual you
named did send that email.

 10

Reply To Email
Some of your recipients may reply directly to an email sent through our system. If the reply is
not an automated reply, bounce message, or request to be removed from your mailing list, our
system will automatically forward it to the email address specified in the reply_to_email field.

Creating an Email Campaign
Call createEmail() to create your campaign. You can launch your campaign directly through the
API, or your users can log in to the VerticalResponse site to edit the campaign. If you have a
Partner account, you can use Single Sign On to direct your users directly to the editing page of
the draft email you just created.

If your users won’t be editing the email through our website, you should set the tested,
previewed_html, and previewed_text arguments to true in the createEmail() call to bypass those
steps.

After you’ve created your campaign, you can edit it by using setEmailCampaignAttributes() or
updateEmailContents(). When your email is ready to go, use the setCampaignLists() method to
assign the lists of recipients to your email campaign.

Note: While still listed in the API documentation, the deprecated createEmailCampaign()
method creates an email campaign using the older editors, which are no longer
supported. You should use the newer createEmail() method instead, because many
related calls will not work with createEmailCampaign().

Launching an Email Campaign
You can call launchEmailCampaign() on any campaign still in draft mode that was created either
using the createEmail() method or via our website. Calling launchEmailCampaign() will send
your campaign to our checkers for final review and, if approved, mailed to the lists you have
specified.

The status of a campaign will change as it passes through our approval process, which you can
confirm by calling enumerateCampaigns() and checking the status parameter for each of your
campaigns. Please note that the statuses returned by the API do not necessarily match the
wording found within the website.

While in draft mode, all campaigns have a status of ‘active’. Immediately after launch, the
campaign will enter a status of ‘pending approval’. It will remain in this state until our campaign
checkers have approved the email, at which time it will enter a status of ‘pending launch’. If the
campaign is declined, the status will return to ‘active’ status. You can retrieve the decline history
of a specific campaign by calling getEmailCampaignDeclineHistory().

If you would like to set the email to launch at a date sometime in the future, you should either
set the mail_date parameter to this future date in your call to createEmail(), or you can update

 11

the campaign’s mail date by calling setEmailCampaignAttribute() using mail_date as the
parameter name and an ISO 8601 formatted date for the value.

6. Campaign Reporting and Statistics

Summary Email Statistics
VerticalResponse automatically handles all email and URL tracking on your behalf for every
email that is sent through our system. We gather and maintain the information for the four
primary statistics used in email marketing: Email Opens, Link Clicks, Bounced Addresses, and
Unsubscribe Requests.

Email Opens
Each HTML email sent through our system includes a small tracking image hosted by
our site that allows us to see who opened your HTML email and when.

Link Clicks
Before sending your email campaign, our system rewrites each HTML link by replacing it
with a unique tracking URL. When a recipient clicks on that link, they are briefly sent to
our tracking servers before immediately being redirected to your original link. This way,
we are able to see who has clicked on which links within your email and report that
information back to you. Using this information in combination with the email open data
shows you who is engaged with your email communications and can allow you to craft
more targeted messages that improve conversions.

To create personalized URLs, you can use custom list fields and merge fields in your
URL. If the customized field appears in the query string of your URL, you can even track
who is clicking through to their personalized URL. For example, if the customer field in
your list is named “user_id”, you can format such a URL like this:

http://www.example.com/profile/?id={user_id}

If the merge field must appear as part of the actual URL, however – either as part of the
domain name or part of the URL path – you will not be able to track that link and will
need to turn off tracking just for that URL. You can accomplish this by prefacing the URL
with “nr_”, like this:

nr_http://www.example.com/profile/{user_id}

Bounced Addresses
Emails that cannot be delivered to their destination are considered to have bounced. If
the receiving server reports that the address doesn’t exist, is poorly formatted, the server
itself is not responding or any other similar permanent failure, that is considered a “hard
bounce” and is immediately reported as undeliverable.

 12

If the receiving server reports a temporary problem delivering the email – i.e. the mail
box is full – then we will continue to try sending for up to 72 hours. If the email is still
undeliverable after 72 hours, it will be marked as undeliverable in our system.

Unsubscribe Requests
In order to ensure we maintain compliance with the CAN-SPAM act, VerticalResponse
must handle all unsubscribe and opt-out requests through our system. Each email sent
through our system has an unsubscribe link embedded in the footer. When a customer
clicks on this link, they are immediately marked as unsubscribed in your account, and we
will no longer send them any emails from your account. Only one unsubscribe link can
be present in each campaign, and emails with multiple unsubscribe links are declined by
our checkers so they can be edited to include only one unsubscribe link.

A summary of these four statistics can be accessed using the getEmailCampaignStats()
method, which will return the summary data for the specified campaign.

Detailed Campaign Reporting
To get the most value out of your email campaign statistics, you should consider implementing
the downloadCampaignRecipientResults() method. This method provides a link to a CSV file
containing detailed information on the actions taken by each list member for a given campaign.
Using this information, you can discover who is most directly engaged with your email
marketing.

7. Creating and Managing Partner Accounts

Creating Subaccounts (Partner API)
The Partner API allows you to programmatically create and manage as many subaccounts as
you need. Before creating any subaccounts through the API, however, you should first confirm
that you have properly installed your client SSL certificate (See Appendix B). Subaccounts
created without a certificate will be accessible by logging in via the VerticalResponse API, but
they will not be tied to your partner account so you will not be able to access them either though
the API or the Partner Dashboard.

Creating an account is a two-step process. You must first call createCompany() to create the
Company object, which contains the contact information used throughout the VerticalResponse
site and in the footer of each email that goes out. The createCompany() method will return a
company ID that you will need for the next call: createUser().

The User object created by the createUser() method will contain the email address that acts as
the username for the subaccount. It also contains much of the same contact information as the

 13

Company object. Even though this is duplicate information, we suggest you supply the same
contact information that you supplied to the createCompany() method.

The createUser() method will return a user ID. Though you will primarily use the username to
access a subaccount, you should also store the user ID and associate it with the email address
for the account. A subaccount user, under some circumstances, may be able to change the
email address they use to login to their account. However, their user ID will never change. In
such an instance, you can retrieve the current email address for a subaccount by calling the
getUser() method with the user ID as a parameter.

The existence of separate company and user objects may tempt you create multiple users for
each company or to add the same user to multiple company objects. Resist this temptation. At
this time, there is a one-to-one relationship between each company and user. If you assign the
same company ID to multiple user objects, the system will behave in unexpected ways. If
you have multiple accounts for a single company, simply call createCompany() for each account
you create with the same company name and contact information, retrieving a separate and
unique company ID for each user.

Similarly, the VerticalResponse system uses the email address as a unique identifier. This
means that you cannot create multiple subaccounts using the same email address as a
username. Doing so will generate a SOAP fault that indicates the username you provided is
already in use. If you run into this error, you should either use a different email address or, if
appropriate, contact your partner success manager and request that the existing account be
added to your partnership.

Single Sign On (SSO, Partner API)
If you are using the Partner API, you can use the Single Sign On (SSO) feature to more tightly
integrate the VerticalResponse website with your system and keep your customers from having
to provide an extra set of credentials in order to access their VerticalResponse account.

The SSO feature consists of a single call to getUserSignonURL() with the username of the
subaccount you wish to access. This method returns a URL that you should then forward to
your customer’s browser, either as the src parameter for an iFrame tag or as a new window.
This URL will establish a session with their browser and automatically log them in to their
VerticalResponse account on our website.

If you supply the post_login_path parameter with this method, you can direct the user’s browser
to a specific page on the VerticalResponse site. This is especially useful if, for example, you are
creating a new email campaign for the user using a template stored on your system that you
would like them to edit using our email creation tools. In this case, you can provide a special
URL in our system designed for this specific purpose:

http://app.verticalresponse.com/app/emails/email/edit/[CAMPAIGN_ID]

 14

You should replace [CAMPAIGN_ID] in this URL with the ID returned from your call to
createEmail().

One of the side effects of SSO is that your system will be responsible for handling all account
creation and login activities. The cobranded URL associated with your partnership will redirect
to a URL that you provide to us, which will also be called should our system lose the session
with your user. The logic at this URL should either allow them to log back in to your system, or
for a better user experience, this URL should first check whether the user still has a session with
your system. If so, it should automatically log them back in to their VerticalResponse account
using the getUserSignonURL() method. Otherwise, it would present them with your login page.

Single Sign On is not enabled by default for your account. In order to have it enabled, you
should contact your partner success manager and provide them with the redirect URL described
above.

8. Appendix

Appendix A: Support Resources
The VerticalResponse team wants to help make your integration with our API a success. We
have created several resources to help you find answers to your questions.

The Developer Network
The Developer Network is the primary resource for both the Enterprise and Partner API. All of
our API documentation is kept up to date and is available online here. You can also find links to
articles, guides, and other information intended to provide inspiration and answer any questions
that may arise.

API Email Support
If you’re integrating with the Enterprise API and run into a challenge you can’t get answered
elsewhere, feel free to reach out to us via email at api-support@verticalresponse.com.

Contact your Partner Success Manager
If you are a VerticalResponse Developer Partner, feel free to reach out to your partner success
manager and the Sales Engineer with any questions you may have during your integration. The
Sales Engineer can also help you and your team architect a solution to use the Partner API to
add value to any of your existing services.

Appendix B: Installing SSL Client Certificates (Partner API)
When your Partner API account is activated, you will be sent two certificates and an associated
passphrase. You should only need one of these certificates, but the one you use will depend on
which language you are developing with.

 15

● If you are using PHP, Ruby or Perl, you will want to use the certificate with a .PEM
extension.

● If you are using Java or C#/.Net, you will want to use the certificate with the .P12
extension.

How your system accesses these certificates depends on which SOAP library you use, which
language you develop in, and which operating system your system is hosted on. For complete
details, please download the sample code for your preferred language from the Developer
Network. However, the following should be true in most situations:

Ruby
Our Ruby sample code assumes that you will be using the soap4r-ruby1.9 gem, but you may
prefer to use the Savon SOAP client gem. In either case, you only need place the certificate file
in a location on your server that is readable by your code and load it directly during your initial
call to instantiate the SOAP client object. The client will automatically send the certificate with
each call to our server provided you use the same client object.

PHP
Though third partly clients such as NuSOAP exist for PHP, the SoapClient object – included as
an extension with the default PHP installation – should be all you need. Like Ruby, you simply
need to place the certificate file in a location on your server that is readable by your code. You’ll
then provide this path as well as the certificate passphrase when you first instantiate the
SoapClient object.

Perl
Your best bet for accessing the VerticalResponse API with perl is to use the SOAP::Lite CPAN
module. To allow SOAP::Lite to access your certificate, you’ll need to set three environment
variables - HTTP_CERT_FILE, HTTPS_KEY_FILE (both of these should point to your PEM file)
and HTTPS_CERT_PASS. For more information, see the SOAP::Lite CPAN documentation.

Java
In order to generate the stub classes from our WSDL, you should use the Axis 1.4 library from
the Apache Foundation. The newer Axis2 libraries are incompatible with RPC-encoded WSDLs,
so they cannot currently be used. In order to set up a certificate in Java, you’ll need to add it to a
Java trust store using the keytool program included with the Java SDK. Complete details can be
found within the documentation directory included in the sample code.

C#/.Net
The latest version of WCF for .Net 3.5 and 4.0 allow you to generate the stub code as a service
reference from within Visual Studio. Simply provide the URL to the Partner API WSDL and your
IDE will handle the rest. You must then add a new behavior element in the app.config that you
reference in the endpoint element of the client block. A complete example of this is included in
the documentation supplied with the sample code.

 16

To install the certificate itself, you should call the certmgr.exe program from the “Run” window
under your start menu and open it manually. Be sure to install the certificate in your Trusted
Root Store in the Local Computer. You should mark it as exportable to be sure it’s readable by
your system. On some versions of Windows Server, you may also need to supply direct access
to the Network Service user using the FindPrivateKey tool.

